skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Macharoen, Kantharakorn"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Making statistical inference on quantities defining various characteristics of a temporally measured biochemical process and analyzing its variability across different experimental conditions is a core challenge in various branches of science. This problem is particularly difficult when the amount of data that can be collected is limited in terms of both the number of replicates and the number of time points per process trajectory. We propose a method for analyzing the variability of smooth functionals of the growth or production trajectories associated with such processes across different experimental conditions. Our modeling approach is based on a spline representation of the mean trajectories. We also develop a bootstrap-based inference procedure for the parameters while accounting for possible multiple comparisons. This methodology is applied to study two types of quantities—the “time to harvest” and “maximal productivity”—in the context of an experiment on the production of recombinant proteins. We complement the findings with extensive numerical experiments comparing the effectiveness of different types of bootstrap procedures for various tests of hypotheses. These numerical experiments convincingly demonstrate that the proposed method yields reliable inference on complex characteristics of the processes even in a data-limited environment where more traditional methods for statistical inference are typically not reliable. 
    more » « less